Moving Average Filter untuk Memisahkan Efek Dangkal Anomali Gravitasi Time Lapse

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Varying Moving Average Model for Autocovariance Nonstationary Time Series

In time series analysis, fitting the Moving Average (MA) model is more complicated than Autoregressive (AR) models because the error terms are not observable. This means that iterative nonlinear fitting procedures need to be used in place of linear least squares. In this paper, Time-Varying Moving Average (TVMA) models are proposed for an autocovariance nonstationary time series. Through statis...

متن کامل

Moving Average Processes with Infinite Variance

The sample autocorrelation function (acf) of a stationary process has played a central statistical role in traditional time series analysis, where the assumption is made that the marginal distribution has a second moment. Now, the classical methods based on acf are not applicable in heavy tailed modeling. Using the codifference function as dependence measure for such processes be shown it be as...

متن کامل

Rank-Based Estimation for Autoregressive Moving Average Time Series Models

We establish asymptotic normality and consistency for rank-based estimators of autoregressive-moving average model parameters. The estimators are obtained by minimizing a rank-based residual dispersion function similar to the one given in L.A. Jaeckel [Estimating regression coefficients by minimizing the dispersion of the residuals, Ann. Math. Statist. 43 (1972) 1449–1458]. These estimators can...

متن کامل

On continuous-time autoregressive fractionally integrated moving average processes

In this paper, we consider a continuous-time autoregressive fractionally integrated moving average (CARFIMA) model, which is defined as the stationary solution of a stochastic differential equation driven by a standard fractional Brownian motion. Like the discrete-time ARFIMA model, the CARFIMA model is useful for studying time series with short memory, long memory and antipersistence. We inves...

متن کامل

Dissertation Time - Frequency - Autoregressive - Moving - Average Modeling of Nonstationary Processes

This thesis introduces time-frequency-autoregressive-moving-average (TFARMA) models for underspread nonstationary stochastic processes (i.e., nonstationary processes with rapidly decaying TF correlations). TFARMAmodels are parsimonious as well as physically intuitive and meaningful because they are formulated in terms of time shifts (delays) and Doppler frequency shifts. They are a subclass of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Prisma Sains : Jurnal Pengkajian Ilmu dan Pembelajaran Matematika dan IPA IKIP Mataram

سال: 2019

ISSN: 2540-7899,2338-4530

DOI: 10.33394/j-ps.v7i2.1766